KV2.1 K+ Channels Underlie Major Voltage-Gated K+ Outward Current in H9c2 Myoblasts.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KV2.1 K+ channels underlie major voltage-gated K+ outward current in H9c2 myoblasts.

The H9c2 clonal cell line derived from embryonic rat ventricle is an in vitro model system for cardiac and skeletal myocytes. We used the whole-cell patch clamp technique to characterize the electrophysiological and pharmacological properties of an outward K+ current (IK(V)) and determined its molecular correlate in H9c2 myoblasts. IK(V) was activated by threshold depolarization to -30 mV, and ...

متن کامل

Voltage-gated outward K currents in frog saccular hair cells.

A biophysical analysis of the voltage-gated K (Kv) currents of frog saccular hair cells enzymatically isolated with bacterial protease VIII was carried out, and their contribution to the cell electrical response was addressed by a modeling approach. Based on steady-state and kinetic properties of inactivation, two distinct Kv currents were found: a fast inactivating IA and a delayed rectifier I...

متن کامل

Inactivation of voltage-gated cardiac K+ channels.

Inactivation is the process by which an open channel enters a stable nonconducting conformation after a depolarizing change in membrane potential. Inactivation is a widespread property of many different types of voltage-gated ion channels. Recent advances in the molecular biology of K+ channels have elucidated two mechanistically distinct types of inactivation, N-type and C-type. N-type inactiv...

متن کامل

Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History

Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage vi...

متن کامل

Molecular heterogeneity of the voltage-gated fast transient outward K+ current, I(Af), in mammalian neurons.

Recently, we identified four kinetically distinct voltage-gated K(+) currents, I(Af), I(As), I(K), and I(SS), in rat superior cervical ganglion (SCG) neurons and demonstrated that I(Af) and I(As) are differentially expressed in type I (I(Af), I(K), I(SS)), type II (I(Af), I(As), I(K), I(SS)), and type III (I(K), I(SS)) SCG cells. In addition, we reported that I(Af) is eliminated in most ( appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Japanese Journal of Physiology

سال: 2002

ISSN: 0021-521X

DOI: 10.2170/jjphysiol.52.507